# PHYS 202 

## Ch. 5

## Capacitance

## Chapter 5

## Chapter Five <br> Capacitance

- Capacitance
- Calculating the Capacitance
- Capacitors in Parallel and in Series
- Energy Stored in an Electric Field
- Capacitor with a Dielectric


## Capacitance

## Capacitance

- Capacitor is an electric device which used for saving energy (electric charge) and enable us to use it later.
$>$ The magnitude of charge $q$ which kept in the capacitor is proportional to the voltage applied across it $V$.

$$
q=C V
$$

where $C$ is the capacitance .

$>$ The SI unit of capacitance is Farad (F).


## Capacitance

## Example 1:

A capacitor with capacitance of 1.25 pF is charged by applying a voltage of 12 V across its ends. The total charge of the capacitor is:

## Solution:

(D)
(A) 12 pC
(B) 13 pC
(C) 14 pC
$\Rightarrow$ 㖵 (D) 15 pC

## Calculating the Capacitance

## Calculating the Capacitance

## A Parallel-Plate Capacitor

> The capacitance for two parallel plates having an equal and opposite charges with plate area $A$ and separation distance $d$ is:

$$
C=\frac{\varepsilon_{0} A}{d}
$$



Electric field lines


## Calculating the Capacitance

## Example 2:

A parallel-plate capacitor with plate's area $25 \mathrm{~cm}^{2}$ and separation of 17.7 mm is charged by applying a voltage of 12 V across its ends. The capacitance of the capacitor is:

## Solution:

(B)
(A) 0.83 pF
(B) 1.25 pF
(C) 2.73 pF
$\Rightarrow$ 踝 $=(\mathrm{D}) 3.09 \mathrm{pF}$

## Calculating the Capacitance

## Example 3:

A parallel-plate capacitor has a capacitance of $8 \mu \mathrm{~F}$. Its capacitance if the plate separation is doubled is:

## Solution:

(C)
(A) $2 \mu \mathrm{~F}$
(B) $3 \mu \mathrm{~F}$
(C) $4 \mu \mathrm{~F}$
(D) $5 \mu \mathrm{~F}$


## Calculating the Capacitance

## Example 4:

Referring to Example 3, if the plate area of the capacitor is doubled. The capacitance will be:

## Solution:

(D)
(A) $10 \mu \mathrm{~F}$
(B) $12 \mu \mathrm{~F}$
(C) $14 \mu \mathrm{~F}$
(D) $16 \mu \mathrm{~F}$


## Calculating the Capacitance

## A Cylindrical Capacitor

$>$ The capacitance for two long


## Calculating the Capacitance

## Example 5:

A coaxial cable of radii 5 mm and 3 mm is connected by a battery of 12 V . If the charge on each cable is 6 nC , the length of the capacitor is:

## Solution:

(B)
(A) 5.4 m
(B) 4.6 m
(C) 2.9 m


## Calculating the Capacitance

## A Spherical Capacitor

$>$ The
capacitance for two concentric spheres with inner radius $a$ and outer radius $b$ is:

$$
C=4 \pi \varepsilon_{0} \frac{a b}{b-a}
$$



## Calculating the Capacitance

## An Isolated Sphere

$>$ The capacitance for a single isolated spherical conductor of radius R can be assigned by assuming that the "missing plate" is a conducting sphere of infinite radius.
$>$ Then by rewriting this equation as

$$
C=4 \pi \varepsilon_{0} \frac{a}{1-a / b}
$$

$>$ If we then let $b \rightarrow \infty$ and substitute R for $a$, we find

$$
C=4 \pi \varepsilon_{0} R
$$

## Calculating the Capacitance

## Example 6:

Two concentric spherical shells of radii 4 cm and 3 cm has a charge of 5 nC . The potential difference across the capacitor is:

## Solution:

(B)
(A) 0.083 KV
(B) 0.375 KV
(C) 1.124 KV
$\rightarrow$ -

## Capacitor in Parallel and in Series

## Capacitors in Parallel and in Series

## Capacitors in Parallel

$>$ If capacitors connected in parallel, the voltage across each capacitor is the same as the total voltage, but the charge on each is different.
$>$ The equivalent capacitance of a group of capacitors connected in parallel is


$$
C_{\mathrm{eq}}=\sum_{j=1}^{n} C_{j}
$$



## Capacitor in Parallel and in Series

## Capacitors in Series

$>$ If capacitors connected in series, the charge on each capacitor is the same as the total charge, but the voltage across each is different.
$>$ The equivalent capacitance of a group of capacitors connected in series is

$$
\frac{1}{C_{\mathrm{eq}}}=\sum_{j=1}^{n} \frac{1}{C_{j}}
$$



## Capacitor in Parallel and in Series

## Example 7:

As shown in the figure, $\mathrm{C}_{1}=6 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{4}=2 \mu \mathrm{~F}$. The equivalent capacitance is:

Solution:
(B)
(A) $4 \mu \mathrm{~F}$
(B) $3 \mu \mathrm{~F}$
(C) $2 \mu \mathrm{~F}$
(D) $1 \mu \mathrm{~F}$


## Energy Stored in an Electric Field

## Energy Stored in an Electric Field

$>$ The electric potential energy of a charged capacitor is the work needed to charge it

$$
\begin{gathered}
U=\frac{q^{2}}{2 C} \\
U=\frac{1}{2} C V^{2}
\end{gathered}
$$

$>$ The energy density is the potential energy per unit volume

$$
u=\frac{1}{2} \varepsilon_{0} E^{2}
$$

where its unit is $J / \mathrm{m}^{3}$

## Energy Stored in an Electric Field

## Example 8:

An isolated conducting sphere whose radius R is 6.85 cm has a charge $\mathrm{q}=1.25 \mathrm{nC}$. The potential energy stored in the electric field of this charged conductor is:

Solution:
(D)
(A) $9.33 \times 10^{-7} \mathrm{~J}$
(B) $6.48 \times 10^{-7} \mathrm{~J}$
(C) $3.72 \times 10^{-7} \mathrm{~J}$
(D) $1.03 \times 10^{-7} \mathrm{~J}$

## Energy Stored in an Electric Field

## Example 9:

Referring to Example 8, the energy density at the surface of the sphere is:

Solution:
(C)
(A) $8.74 \times 10^{-5} \mathrm{~J} / \mathrm{m}^{3}$
(B) $5.89 \times 10^{-5} \mathrm{~J} / \mathrm{m}^{3}$
(C) $2.54 \times 10^{-5} \mathrm{~J} / \mathrm{m}^{3}$
(D) $1.58 \times 10^{-5} \mathrm{~J} / \mathrm{m}^{3}$

## Capacitor with a Dielectric

## Capacitor with a Dielectric

- In a region completely filled by a dielectric material of dielectric constant $\kappa$, all electrostatic equations containing the permittivity constant $\varepsilon_{0}$ are to be modified by replacing $\varepsilon_{0}$ with $\kappa \varepsilon_{0}$.

$$
C=\kappa C_{\mathrm{air}},
$$



## Capacitor with a Dielectric

## Example 10:

A parallel-plate capacitor whose capacitance C is 13.5 pF is charged by a battery to a potential difference $V=12.5 \mathrm{~V}$ between its plates. The potential energy of the capacitor-slab device after a porcelain slab $(\kappa=6.50)$ is slipped between the plates is:

Solution:
(B)
(A) 43 pJ
(B) 162 pJ
(C) 383 pJ
(D) 561 pJ

