

PHYS 202

Ch. 5

Capacitance

Chapter 5

Chapter Five

Capacitance

- Capacitance
- Calculating the Capacitance
- Capacitors in Parallel and in Series
- Energy Stored in an Electric Field
- Capacitor with a Dielectric

2

Capacitance

Capacitance

- ➤ Capacitor is an electric device which used for saving energy (electric charge) and enable us to use it later.
- ➤ The magnitude of charge q which kept in the capacitor is proportional to the voltage applied across it V.

q = CV.

where C is the capacitance.

3

➤ The SI unit of capacitance is Farad (F).

Capacitance

Example 1:

A capacitor with capacitance of 1.25 pF is charged by applying a voltage of 12 V across its ends. The total charge of the capacitor is:

(D)

Calculating the Capacitance

- A Parallel-Plate Capacitor
- The capacitance for two parallel plates having an equal and opposite charges with plate area A and separation distance d is:

$$C = \frac{\varepsilon_0 A}{d}$$

Physics Department

5

Example 2:

A parallel-plate capacitor with plate's area 25 cm^2 and separation of 17.7 mm is charged by applying a voltage of 12 V across its ends. The capacitance of the capacitor is:

Solution:

(B)

Physics Department

(A) 0.83 pF (B) 1.25 pF (C) 2.73 pF (D) 3.09 pF

Example 3:

A parallel-plate capacitor has a capacitance of 8 μ F. Its capacitance if the plate separation is doubled is:

Solution:

(C)

(A) 2 μF
(B) 3 μF
(C) 4 μF
(D) 5 μF

Example 4:

Referring to Example 3, if the plate area of the capacitor is doubled. The capacitance will be:

Solution:

(D)

(A) 10 μF
(B) 12 μF
(C) 14 μF
(D) 16 μF

8

A Cylindrical Capacitor

The capacitance for two long coaxial cylinders of length *L* and inner radius *a* and outer radius *b* is:

$$C = 2\pi\varepsilon_0 \frac{L}{\ln(b/a)}$$

9

Example 5:

A coaxial cable of radii 5 mm and 3 mm is connected by a battery of 12 V. If the charge on each cable is 6 nC, the length of the capacitor is:

(B)

Physics Department

Solution:

(A) 5.4 m (B) 4.6 m (C) 2.9 m (D) 1.8 m

A Spherical Capacitor

 \blacktriangleright The capacitance for two concentric spheres with inner radius *a* and outer radius *b* is:

$$C = 4\pi\varepsilon_0 \frac{ab}{b-a}$$

11

An Isolated Sphere

The capacitance for a single isolated spherical conductor of radius R can be assigned by assuming that the "missing plate" is a conducting sphere of infinite radius.

Then by rewriting this equation
as
$$C = 4\pi\varepsilon_0 \frac{a}{1-a/b}$$
 $C = 4\pi\varepsilon_0 \frac{ab}{b-a}$

12

► If we then let $b \rightarrow \infty$ and substitute R for *a*, we find $C = 4\pi\varepsilon_0 R$

Example 6:

Two concentric spherical shells of radii 4 cm and 3 cm has a charge of 5 nC. The potential difference across the capacitor is:

Solution:

(B)

(A) 0.083 KV (B) 0.375 KV (C) 1.124 KV (D) 2.361 KV

Capacitor in Parallel and in Series

Capacitors in Parallel and in Series

Capacitors in Parallel

- If capacitors connected in parallel, the voltage across each capacitor is the same as the total voltage, but the charge on each is different.
- The equivalent capacitance of a group of capacitors connected in parallel is

$$C_{\text{eq}} = \sum_{j=1}^{n} C_j$$

14

Capacitor in Parallel and in Series

Capacitors in Series

- If capacitors connected in series, the charge on each capacitor is the same as the total charge, but the voltage across each is different.
- The equivalent capacitance of a group of capacitors connected in series is

$$\frac{1}{C_{\text{eq}}} = \sum_{j=1}^{n} \frac{1}{C_j}$$

Physics Department

15

Capacitor in Parallel and in Series

Example 7:

As shown in the figure, $C_1 = 6\mu F$ and $C_2 = C_3 = C_4 = 2\mu F$. The equivalent capacitance is:

Solution:

(B)

(A) 4 μF
(B) 3 μF
(C) 2 μF
(D) 1 μF

16

Energy Stored in an Electric Field

Energy Stored in an Electric Field

The electric potential energy of a charged capacitor is the work needed to charge it

$$U = \frac{q^2}{2C}$$
$$U = \frac{1}{2}CV^2$$

The energy density is the potential energy per unit volume

$$u = \frac{1}{2}\varepsilon_0 E^2$$

where its unit is J/m^3

17

Energy Stored in an Electric Field

Example 8:

An isolated conducting sphere whose radius R is 6.85 cm has a charge q = 1.25 nC. The potential energy stored in the electric field of this charged conductor is:

(D)

Solution:

18

```
(A) 9.33 \times 10^{-7} J
(B) 6.48 \times 10^{-7} J
(C) 3.72 \times 10^{-7} J
(D) 1.03 \times 10^{-7} J
```

Energy Stored in an Electric Field

Example 9:

Referring to Example 8, the energy density at the surface of the sphere is:

Solution:

19

(C)

(A) $8.74 \times 10^{-5} \text{ J/m}^3$ (B) $5.89 \times 10^{-5} \text{ J/m}^3$ (C) $2.54 \times 10^{-5} \text{ J/m}^3$ (D) $1.58 \times 10^{-5} \text{ J/m}^3$

Capacitor with a Dielectric

Capacitor with a Dielectric

▶ In a region completely filled by a dielectric material of dielectric constant κ , all electrostatic equations containing the permittivity constant ε_0 are to be modified by replacing ε_0 with $\kappa \varepsilon_0$.

$$C = \kappa C_{air},$$

20

Capacitor with a Dielectric

Example 10:

A parallel-plate capacitor whose capacitance C is 13.5 pF is charged by a battery to a potential difference V = 12.5 V between its plates. The potential energy of the capacitor–slab device after a porcelain slab ($\kappa = 6.50$) is slipped between the plates is:

Solution:

(B)

